Spectral Indices Accurately Quantify Changes in Seedling Physiology Following Fire: Towards Mechanistic Assessments of Post-Fire Carbon Cycling

نویسندگان

  • Aaron M. Sparks
  • Crystal A. Kolden
  • Alan F. Talhelm
  • Alistair M. S. Smith
  • Kent G. Apostol
  • Daniel M. Johnson
  • Luigi Boschetti
چکیده

Fire activity, in terms of intensity, frequency, and total area burned, is expected to increase with a changing climate. A challenge for landscape-level assessment of fire effects, often termed burn severity, is that current remote sensing assessments provide very little information regarding tree/vegetation physiological performance and recovery, limiting our understanding of fire effects on ecosystem services such as carbon storage/cycling. In this paper, we evaluated whether spectral indices common in vegetation stress and burn severity assessments could accurately quantify post-fire physiological performance (indicated by net photosynthesis and crown scorch) of two seedling species, Larix occidentalis and Pinus contorta. Seedlings were subjected to increasing fire radiative energy density (FRED) doses through a series of controlled laboratory surface fires. Mortality, physiology, and spectral reflectance were assessed for a month following the fires, and then again at one year post-fire. The differenced Normalized Difference Vegetation Index (dNDVI) spectral index outperformed other spectral indices used for vegetation stress and burn severity characterization in regard to leaf net photosynthesis quantification, indicating that landscape-level quantification of tree physiology may be possible. Additionally, the survival of the majority of seedlings in the low and moderate FRED doses indicates that fire-induced mortality is more complex than the currently accepted binary scenario, where trees survive with no impacts below a certain temperature and duration threshold, and mortality occurs above the threshold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spat...

متن کامل

Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain

Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we sum...

متن کامل

Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical technique...

متن کامل

Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar

Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and...

متن کامل

Investigation of Fire Effects on Physical and Chemical Characteristics of Soil in Golandaz Dehbekri Rangeland

Awareness of the effects of fire on various aspects of an ecosystem after the fire,is important for range management. Changes in soil physical and chemical propertiescaused by fire can be the cause of changes in the vegetation. In this study, effects of fire onphysical and chemical characteristics of soil were investigated. This research was carriedout in a randomized block design method in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016